ペロブスカイト太陽電池について
次世代の新しい電力になると確信しているペロブスカイト太陽電池を紹介します。
フィルムのように薄く、また軽くて柔軟性のある次世代型の太陽電池は、2006年に桐蔭横浜大学の宮坂力特任教授が発明しました。
壁や屋根、柱などの曲面に設置できるほか、電気自動車やIT機器への搭載が見込まれています。
既存のシリコン製太陽電池よりも安価に製造できるとして、普及が期待され、複数の国内メーカーや大学などで実用化に向けた研究開発が進んでいます。
ペロブスカイト太陽電池は、「ペロブスカイト」という特殊な結晶構造を持つ太陽電池の総称です。
目新しい構造ではなかったのですが、宮坂教授が太陽電池として作動することを見いだしたそうです。
「ペロブスカイト」は、本来は「灰チタン石」とも呼ばれる鉱物CaTiO3を指すそうです。
170年以上前にロシアのウラル山脈で発見された立方体やダイヤモンドのような結晶構造を持つ鉱物です。
ロシアの鉱物学者レフ・ペロフスキーさんにちなんで名付けられたペロブスカイトは、主に地球のマントルに多く存在し、時には地表近くの鉱床にも存在しています。
その後、そのABX3という結晶構造が多くの鉱物に非常に一般的であることが分かり、その構造を備えた材料全般を指すようになりました。
コンデンサーなどに使われるチタン酸バリウム(BaTiO3)や、圧電材料のチタン酸ジルコン酸鉛(PZT)もペロブスカイト構造を採っています。
開発に携わる東芝とかの研究者や技術者は、近い将来に変換効率25%の太陽電池を、現在普及しているSi系太陽電池の1/5の価格で実現できるとみています。
変換効率とは、電気エネルギーを可視光線(人間の目で見ることのできる波長の電磁波)にどれだけ効率良く変換できるかという指標で、 入力する電気エネルギーを100%とした場合、一般的な白熱電球の場合は10%程度、蛍光灯の場合は20%程度ですが、LEDの場合は30~50%といわれています。
宮坂教授が2009年に製作したペロブスカイト太陽電池は3%台でした。
それが2012年に10%を突破すると世界中で研究に火がつき、2014年には米カリフォルニア大学ロサンゼルス校のチームが19・3%の成果を発表し、そして2015年、韓国化学研究所が20・1%をたたきだし、20%台へ突入しました。
理論上は30%が可能とされていますが、実際の製作可能性を考えると25%は十分にいけると見られています。
それも「あと1年で25%に届くと言われている」(宮坂教授)そうです。
研究室レベルではあるがペロブスカイト太陽電池は短期間に半世紀の歴史があるシリコン系と並ぶという驚異的な成長ぶりとなっています。
圧倒的な低コストで製造できる(宮坂教授)のも大きな特徴であり、世界中の研究者を引きつける魅力です。
また、材料そのものが安く、その材料を基板に塗って製作できるためシリコン系ほど高温を必要する製造プロセスがなく安価になります。
宮坂教授は、実用化されるとシリコン系と競合しないと話しています。
屋根の上や地面はシリコン系が使われ、ペロブスカイト太陽電池はシリコン系が苦手な場所に普及することになります。
例えば軽さを生かし、ビル壁面に貼り付ける太陽電池をつくれ、フィルムのような柔らかい基板にも塗布できるので曲げ伸ばし可能な太陽電池を製作して曲面にも取り付けができます。
また、窓を太陽電池にすることも可能です。
現在でも「窓発電」はありますが、太陽電池に光が透過する切り込みを入れています。
室内に光を届けられますが、切った部分は発電しないので無駄になります。
これに対して、ペロブスカイト太陽電池は色を薄くして半透明にもできるので、窓全体を発電に使えます。
また、自動車に塗ると車体を太陽電池にもできます。
課題は耐久性だと言われています。
有機材料を使うため高温に弱く、空気や湿気による劣化も進むため、適切な封止剤を見つけて密閉する必要があります。
「劣化の原因はわかっている。犯人の物質を他の物質に置き換えればよい」とするように、課題克服の道筋ははっきりしています。世界の研究者が競い合うように開発を加速させており、実用化の日は近いと言われています。
日本でも、大企業の各社がこの実用化に取り組んでいます。
2018年、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)と東芝は、東芝が保有するメニスカス塗布技術に加えて新たなプロセス開発などにより、従来両立の困難であったセルの大面積化と高効率化を実現しています。
モジュール面積703 c㎡(世界最大)、エネルギー変換効率11.7%のフィルム型ペロブスカイト太陽電池モジュールを開発しており、面積の広さに加え、しなやかさと軽量性を併せ持つことで、将来の太陽電池の設置場所拡大につながることが期待されます。
2021年、ホシデンは、次世代の太陽電池と目される、ペロブスカイト型太陽電池事業に参入しました。
ペロブスカイト型太陽電池は、低温プロセスにより製造されるため、製造過程の電力消費量も小さく、主に有機材料を用いるため生産コストの抑制が期待できます。2021年度にサンプル展開、2022年に量産機の導入、2023年からの量産を目指しています。
リコーは、JAXA(宇宙航空研究開発機構)や桐蔭横浜大学と共同開発したペロブスカイト太陽電池の開発を行っています。
三菱マテリアルは、エネコートテクノロジーズへ出資するとともに、ペロブスカイト太陽電池の耐久性の向上に貢献する技術や鉛フリー化に必要な周辺材料などの開発を進めています。
中国やヨーロッパでは、日本よりも実用化が進んでいるとも言われています。
ぜひ実用化して、すべての家庭や会社が、自家発電での電気供給を実現してほしいものです。
フィルムのように薄く、また軽くて柔軟性のある次世代型の太陽電池は、2006年に桐蔭横浜大学の宮坂力特任教授が発明しました。
壁や屋根、柱などの曲面に設置できるほか、電気自動車やIT機器への搭載が見込まれています。
既存のシリコン製太陽電池よりも安価に製造できるとして、普及が期待され、複数の国内メーカーや大学などで実用化に向けた研究開発が進んでいます。
ペロブスカイト太陽電池は、「ペロブスカイト」という特殊な結晶構造を持つ太陽電池の総称です。
目新しい構造ではなかったのですが、宮坂教授が太陽電池として作動することを見いだしたそうです。
「ペロブスカイト」は、本来は「灰チタン石」とも呼ばれる鉱物CaTiO3を指すそうです。
170年以上前にロシアのウラル山脈で発見された立方体やダイヤモンドのような結晶構造を持つ鉱物です。
ロシアの鉱物学者レフ・ペロフスキーさんにちなんで名付けられたペロブスカイトは、主に地球のマントルに多く存在し、時には地表近くの鉱床にも存在しています。
その後、そのABX3という結晶構造が多くの鉱物に非常に一般的であることが分かり、その構造を備えた材料全般を指すようになりました。
コンデンサーなどに使われるチタン酸バリウム(BaTiO3)や、圧電材料のチタン酸ジルコン酸鉛(PZT)もペロブスカイト構造を採っています。
開発に携わる東芝とかの研究者や技術者は、近い将来に変換効率25%の太陽電池を、現在普及しているSi系太陽電池の1/5の価格で実現できるとみています。
変換効率とは、電気エネルギーを可視光線(人間の目で見ることのできる波長の電磁波)にどれだけ効率良く変換できるかという指標で、 入力する電気エネルギーを100%とした場合、一般的な白熱電球の場合は10%程度、蛍光灯の場合は20%程度ですが、LEDの場合は30~50%といわれています。
宮坂教授が2009年に製作したペロブスカイト太陽電池は3%台でした。
それが2012年に10%を突破すると世界中で研究に火がつき、2014年には米カリフォルニア大学ロサンゼルス校のチームが19・3%の成果を発表し、そして2015年、韓国化学研究所が20・1%をたたきだし、20%台へ突入しました。
理論上は30%が可能とされていますが、実際の製作可能性を考えると25%は十分にいけると見られています。
それも「あと1年で25%に届くと言われている」(宮坂教授)そうです。
研究室レベルではあるがペロブスカイト太陽電池は短期間に半世紀の歴史があるシリコン系と並ぶという驚異的な成長ぶりとなっています。
圧倒的な低コストで製造できる(宮坂教授)のも大きな特徴であり、世界中の研究者を引きつける魅力です。
また、材料そのものが安く、その材料を基板に塗って製作できるためシリコン系ほど高温を必要する製造プロセスがなく安価になります。
宮坂教授は、実用化されるとシリコン系と競合しないと話しています。
屋根の上や地面はシリコン系が使われ、ペロブスカイト太陽電池はシリコン系が苦手な場所に普及することになります。
例えば軽さを生かし、ビル壁面に貼り付ける太陽電池をつくれ、フィルムのような柔らかい基板にも塗布できるので曲げ伸ばし可能な太陽電池を製作して曲面にも取り付けができます。
また、窓を太陽電池にすることも可能です。
現在でも「窓発電」はありますが、太陽電池に光が透過する切り込みを入れています。
室内に光を届けられますが、切った部分は発電しないので無駄になります。
これに対して、ペロブスカイト太陽電池は色を薄くして半透明にもできるので、窓全体を発電に使えます。
また、自動車に塗ると車体を太陽電池にもできます。
課題は耐久性だと言われています。
有機材料を使うため高温に弱く、空気や湿気による劣化も進むため、適切な封止剤を見つけて密閉する必要があります。
「劣化の原因はわかっている。犯人の物質を他の物質に置き換えればよい」とするように、課題克服の道筋ははっきりしています。世界の研究者が競い合うように開発を加速させており、実用化の日は近いと言われています。
日本でも、大企業の各社がこの実用化に取り組んでいます。
2018年、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)と東芝は、東芝が保有するメニスカス塗布技術に加えて新たなプロセス開発などにより、従来両立の困難であったセルの大面積化と高効率化を実現しています。
モジュール面積703 c㎡(世界最大)、エネルギー変換効率11.7%のフィルム型ペロブスカイト太陽電池モジュールを開発しており、面積の広さに加え、しなやかさと軽量性を併せ持つことで、将来の太陽電池の設置場所拡大につながることが期待されます。
2021年、ホシデンは、次世代の太陽電池と目される、ペロブスカイト型太陽電池事業に参入しました。
ペロブスカイト型太陽電池は、低温プロセスにより製造されるため、製造過程の電力消費量も小さく、主に有機材料を用いるため生産コストの抑制が期待できます。2021年度にサンプル展開、2022年に量産機の導入、2023年からの量産を目指しています。
リコーは、JAXA(宇宙航空研究開発機構)や桐蔭横浜大学と共同開発したペロブスカイト太陽電池の開発を行っています。
三菱マテリアルは、エネコートテクノロジーズへ出資するとともに、ペロブスカイト太陽電池の耐久性の向上に貢献する技術や鉛フリー化に必要な周辺材料などの開発を進めています。
中国やヨーロッパでは、日本よりも実用化が進んでいるとも言われています。
ぜひ実用化して、すべての家庭や会社が、自家発電での電気供給を実現してほしいものです。
スポンサーサイト